

同调代数与几何应用

- 自我介绍. Email: xwu@fudan.edu.cn.
office hour: Monday 3pm - 4pm.
- 网页: WuXiaolei.org
成绩: 30% 考勤
30% 作业
- 40% 项目
- Cohomology of Groups.

Ref K. Brown Cohomology of Groups Springer 1982.

History.

Def (Hurewitz) 1936 A space X is called aspherical if it is path-connected and $\pi_i(X) = 0$ for all $i \geq 2$.

Thm (Hurewitz) If X and Y are aspherical space with the same fundamental group then X and Y are homotopy equivalent.

two maps $f, f_2: X \rightarrow Y$ are homotopy if there exists

a map $F: X \times [0,1] \rightarrow Y$ s.t.

$$F|_{X \times \{0\}} = f_0 \text{ and } F|_{X \times \{1\}} = f_1$$

two spaces X, Y are called homotopy equivalent if there exist maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ s.t.

$$f \circ g \simeq \text{id}_Y \text{ and } g \circ f \simeq \text{id}_X$$

Def: $H_*(G) = H_*(K(G, 1))$ where $K(G, 1)$ is an aspherical space with fundamental gp

observation

$$H_0(G) = \mathbb{Z}$$

$$H_1(G) = \mathbb{Z}/(G, G)$$

problem it is hard to calculate $H_n(G)$ for $n \geq 2$ in general.

Remark : Hopf has a description of $H_2(G)$ using a presentation of G .

[1970s] Algebraic definition of $H_*(G) / H^*(G)$.

Applications : ① Calculation of $K_*(R)$.

Borel. $K_*(\mathbb{Z}) \otimes \mathbb{Q}$

Quillen $K_*(F)$ where F is a finite field.

② Mumford Conjecture (1983).

²⁰⁰²
(Madsen-Weiss) Stable homotopy of $\text{Map}(\Sigma_{g,1})$
[2006 ICM plenary talk]

③ Finiteness properties.

[Eilenberg-Ganea ¹⁹⁵⁷ Conjecture] If $gd G = 2$, does $cd G = 2$.

[Whitehead Conjecture] ¹⁹⁴¹ Let X be an aspherical CW complex. Is any subcomplex of X also aspherical?

1997
[Bestvina-Brady]
fails.

at least one of these two conjecture

0. Some homological algebra.

Def: let R be a ring with unit. A (left) R -module is

an abelian grp M together with a left action

$(r, x) \rightarrow rx$ of R on M st.

$$(1) \quad r(sx) = (rs)x \text{ and}$$

$$(2) \quad (r+s)x = rx + sx, \quad r(x+y) = rx + ry$$

for all $r \in R$, $x, y \in M$.

$$(3) \quad 1 \cdot x = x \text{ for all } x \in M.$$

Explan: Every abelian grp is a \mathbb{Z} -module.

in which nx is the usual integer

multiple, $nx = \underbrace{x + \dots + x}_n$ when $n > 0$.

Def: let M be a left R -module. A subset S of M is linearly independent (over R) when $\sum_{s \in S} r_s s = 0$ with $r_s \in R$ for all s and $r_s = 0$ for all but finitely many s , implies $r_s = 0$ for all $s \in S$.

Def: A basis of a left R -module M is a linearly independent set of M that generates (spans) M . A module is free when it has a basis, and it then free on that basis.

Remark / Exe. M is free if and only if $M \cong \bigoplus_{i \in I} R$ for some set I .

Def: A left R -module P is projective if $\varphi: P \rightarrow N$,

$\varphi: M \rightarrow N$ are homomorphisms and φ is surjective, then there is $\psi: P \rightarrow M$ s.t. $\varphi = \varphi \circ \psi$. i.e. the following diagram commutes.

$$\begin{array}{ccccc} & & P & & \\ & \varphi' \downarrow & & \downarrow \varphi & \\ M & \xleftarrow{\psi} & N & \rightarrow & 0 \end{array}$$

Rem / Exe: every free module is projective

Def: (1) A graded R -module is a sequence

$C = (C_n)_{n \in \mathbb{Z}}$ of R -modules. If $x \in C_n$, then we

say that x has degree n and write $\deg x = n$.

(2) A map of degree p from a graded R -module C to a graded R -module C' is a family of maps $f = (f_n: C_n \rightarrow C'_{n+p})_{n \in \mathbb{Z}}$ of R -module homomorphisms.

$$[\deg(f \circ x) = \deg f + \deg x]$$

(3) A chain complex over R is a pair (C, d) where C is a graded R -module and $d: C \rightarrow C$ is a degree -1 st.

$$d^2 = 0$$

$$\cdots \rightarrow C_n \xrightarrow{d_n} C_{n-1} \rightarrow \cdots \xrightarrow{d_1} C_0 \rightarrow \cdots$$

The map $d: C \rightarrow C$ is called the differential

or boundary operator of C ,

[we often suppress d from the notation and simply say that C is a chain complex]

(4) given a chain complex (C, d) we define the cycles $Z(C) = \ker(d)$

boundaries $B(C) = \text{im}(d)$

and homology $H(C) = \frac{Z(C)}{B(C)}$ $H_n(C) = \frac{\ker d_n}{\text{im } d_{n+1}}$

Example:

$$\cdots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow[n \rightarrow 2n]{d_3} \mathbb{Z} \xrightarrow[n \rightarrow n]{d_2} \mathbb{Z} \xrightarrow[n \rightarrow 0]{d_1} \mathbb{Z} \rightarrow \cdots$$

$$Z(C) \quad \cdots \quad 0 \quad 0 \quad 2\mathbb{Z} \quad \mathbb{Z}_2 \quad \mathbb{Z} \quad 0$$

$$B(C) \quad \cdots \quad 0 \quad 0 \quad 2\mathbb{Z} \quad \mathbb{Z}_2 \quad 0 \quad 0 \cdots$$

$$H(C) \quad 0 \quad 0 \quad 0 \quad 0 \quad \mathbb{Z} \quad 0$$

Def: C is called exact at C_n if $H_n(C) = 0$
i.e. $\ker d_n = \text{im } d_{n+1}$.

$$\cdots \rightarrow C^{n-1} \xrightarrow{d_{n-1}} C^n \xrightarrow{d_n} C^{n+1} \rightarrow \cdots$$

(5) When we have a graded modules C with an endomorphism d of square zero such that d has degree $+1$ instead of -1 .

In this case we write $C = (C^n)_{n \in \mathbb{Z}}$ and $d: C^n \rightarrow C^{n+1}$.

Such a pair (C, d) is called a *cochain complex*.

Similarly, we define

Cocycles: $Z(C) = \ker(d)$

Coboundaries: $B(C) = \text{Im}(d)$

Cohomology: $H(C) = (H^n(C))_{n \in \mathbb{Z}} := \frac{\ker d^n}{\text{Im } d^{n-1}}$

(6) If (C, d) and (C', d') are chain complexes, then a chain map from C to C' is a **graded module homomorphism** $f: C \rightarrow C'$

of degree 0 s.t. $d'f = fd$. A **homotopy** h from a chain map f to a chain map g is a graded homomorphism

$h: C \rightarrow C'$ of degree 1 s.t. $d'h + hd = f - g$.

We write $f \simeq g$ and say that f is *homotopic* to g if there is a homotopy from f to g .

Prop:

A chain map $f: C \rightarrow C'$ induces a map $H(f): H(C) \rightarrow H(C')$

and $H(f) = H(g)$ if $f \cong g$.

Proof:

(1) we have

$$\begin{array}{ccccccc} & & \rightarrow & C_{n+1} & \xrightarrow{d_{n+1}} & C_n & \xrightarrow{d_n} C_{n-1} \rightarrow \cdots \\ & & \downarrow f & \cong & \downarrow f & \cong & \downarrow f \\ \cdots & \rightarrow & C_{n+1}' & \xrightarrow{d_{n+1}'} & C_n' & \xrightarrow{d_n'} C_{n-1}' \rightarrow \cdots \end{array}$$

$$H_n(C) = \frac{\ker(d_n)}{\text{Im}(d_{n+1})}$$

To show $H_n(C) \rightarrow H_n(C')$ is induced from $f: C_n \rightarrow C_n'$ is well defined, it suffices to show that

(1) $\forall x \in C_n, \text{ if } d_n(x) = 0, \text{ then } d_{n+1} \circ f(x) = 0$

(2) $\forall x \in C_{n+1}, \exists y \in C_{n+1}' \text{ s.t.}$

$$d_{n+1}'(y) = f \circ d_{n+1}(x) \quad (\text{choose } y = f(x))$$

(2)

let $[x] \in H^n(C)$.

then $f([x])$, $g([x]) \in H^n(C')$ we have $f: C \rightarrow C'$

of degree 1

$$\begin{aligned} \text{s.t. } f([x]) - g([x]) &= \underbrace{d_{n+1} \circ h_n(x)}_{\in \text{Im}(d_{n+1})} + \underbrace{h_{n-1} \circ d_n(x)}_{x \in \ker d_n} \\ &= 0 + 0 = 0 \end{aligned}$$

Def: The abelian group of homotopy classes of chain maps
 $C \rightarrow C'$ will be denoted by $[C, C']$

Def: let M, N be two R -modules. The set
 $\text{Hom}_R(A, B) = \{f \mid f: A \rightarrow B\}$

of all R -module homomorphisms f of A into B is an abelian group, under the addition defined for $f, g: A \rightarrow B$ by
 $(f+g)a = f(a) + g(a)$.

Def: let C, C' be two chain complexes. we can define
another chain complex $\text{Hom}_R(C, C')$:

$$\text{Hom}_R(C, C')_n = \prod_{q \in \mathbb{Z}} \text{Hom}_R(C_q, C'_{q+n})$$

$D_n: \text{Hom}_R(C, C')_n \rightarrow \text{Hom}_R(C, C')_{n-1}$ is defined by
 $D_n(f) = d'f - (-1)^n f d$.

Lemma: The 0-cycles are precisely the chain maps $C \rightarrow C'$, and
the 0-boundaries are the null-homotopic chain maps.

$$\text{Thus } \text{Ho}(\text{Hom}_R(C, C')) = [C, C']$$

Proof: $D_0(f) = d'f - fd = 0$, where $f \in \prod_{q \in \mathbb{Z}} \text{Hom}_R(C_q, C'_q)$
Thus f is a chain map.

The 0-boundaries are image of D_1 :

where $D_1(f) = df + fd$,

$$f \in \prod_{q \in \mathbb{Z}} \text{Hom}(C_q, C'_{q+1})$$

Thus f is a chain homotopy from $D_1(f) = 0$

This means the 0-boundaries are the null-homotopic chain maps. \square

More generally, there is an interpretation of $H_n(\text{Hom}_R(C, C'))$ in terms of chain maps. Consider the chain complex

$$(\Sigma^n C, \Sigma^n d) \text{ defined by } (\Sigma^n C)_p = C_{p-n} \quad \Sigma^n d_p = (-)^n d_{p-n}$$

This complex is called the n -fold suspension of C .

[If $n=1$, we write ΣC instead of $\Sigma^1 C$. Let $[C, C']_n = [\Sigma^n C, \Sigma^n C']$]

$$\text{Then we have } H_n(\text{Hom}_R(C, C')) = [C, C']_n$$

The elements of $[,]_n$ are called homotopy classes of chain maps of def. n .

A chain map $f: C \rightarrow C'$ is called a homotopy equivalence if there is a chain map $f': C' \rightarrow C$ st. $f'f \simeq \text{id}_C$ and $ff' \simeq \text{id}_{C'}$.

And a chain map is called a weak equivalence if $\pi(f): H(C) \rightarrow H(C')$ is an isomorphism.

Prop: Any homotopy equivalence is a weak equivalence.

Def A chain complex is called contractible if it homotopy equivalent to the zero complex, i.e. $\text{id}_C \simeq 0$. A homotopy from id_C to 0 is called a contracting homotopy. C is called acyclic if $H_*(C) = 0$.